An H-galerkin Mixed Method for Second Order Hyperbolic Equations
نویسندگان
چکیده
An H1Galerkin mixed finite element method is discussed for a class of second order hyperbolic problems. It is proved that the Galerkin approximations have the same rates of convergence as in the classical mixed method, but without LBB stability condition and quasi-uniformity requirement on the finite element mesh. Compared to the results proved for one space variable, the L∞(L2)-estimate of the stress is not optimal with respect to the approximation property for the problems in two and three space dimensions. It is further noted that if the RaviartThomas spaces are used for approximating the stress, then optimal estimate in L∞(L2)-norm is achieved using the new formulation. Finally, without restricting the approximating spaces for the stress, a modification of the method is proposed and analyzed. This confirms the findings in a single space variable and also improves upon the order of convergence of the classical mixed procedure under an extra regularity assumption on the exact solution.
منابع مشابه
A new splitting H-Galerkin mixed method for pseudo-hyperbolic equations
A new numerical scheme based on the H-Galerkin mixed finite element method for a class of second-order pseudohyperbolic equations is constructed. The proposed procedures can be split into three independent differential sub-schemes and does not need to solve a coupled system of equations. Optimal error estimates are derived for both semidiscrete and fully discrete schemes for problems in one spa...
متن کاملHp-finite Element Methods for Hyperbolic Problems A
This paper is devoted to the a priori and a posteriori error analysis of the hp-version of the discontinuous Galerkin nite element method for partial differential equations of hyperbolic and nearly-hyperbolic character. We consider second-order partial diierential equations with nonnegative characteristic form, a large class of equations which includes convection-dominated diiusion problems , d...
متن کاملA Posteriori Error Estimates for Mixed Finite Element Galerkin Approximations to Second Order Linear Hyperbolic Equations
In this article, a posteriori error analysis for mixed finite element Galerkin approximations of second order linear hyperbolic equations is discussed. Based on mixed elliptic reconstructions and an integration tool, which is a variation of Baker’s technique introduced earlier by G. Baker (SIAM J. Numer. Anal., 13 (1976), 564-576) in the context of a priori estimates for a second order wave equ...
متن کاملNonconforming H-Galerkin Mixed Finite Element Method for Pseudo-Hyperbolic Equations
Based on H-Galerkin mixed finite element method with nonconforming quasi-Wilson element, a numerical approximate scheme is established for pseudo-hyperbolic equations under arbitrary quadrilateral meshes. The corresponding optimal order error estimate is derived by the interpolation technique instead of the generalized elliptic projection which is necessary for classical error estimates of fini...
متن کاملA Priori Estimates for Mixed Finite Element Approximations of Second Order Hyperbolic Equations with Absorbing Boundary Conditions
A priori estimates for mixed nite element methods for the wave equations, 6] T. Dupont, L 2-estimates for Galerkin methods for second order hyperbolic equations, SIAM J.
متن کامل